
Neural attractor network classification of visual field data 283

Perimetry Update 1998/1999, pp. 283–288
Proceedings of the XIIIth International Perimetric Society Meeting,
Gardone Riviera (BS), Italy, September 6–9, 1998
edited by M. Wall and J.M. Wild
© 1999 Kugler Publications, The Hague, The Netherlands

NEURAL ATTRACTOR NETWORK CLASSIFICATION OF
VISUAL FIELD DATA

WOLFGANG FINK1, ULRICH SCHIEFER2 and ERICH W. SCHMID3

1Kellogg Lab, California Institute of Technology, Pasadena, CA, USA; 2University
Eye Hospital, Department II and 3Institute for Theoretical Physics, Tübingen,
Germany

Abstract

Since many neuro-ophthalmological diseases and lesions, even subtle ones, may be recognized from
perimetric examinations, the appropriate classification of visual field data is essential for diagnosis.
However, adequate classification and interpretation of perimetric examination results is not a trivial task
and requires well-trained personnel with long-term experience. Therefore, a computer-based clas-sification
system for visual field data is introduced that may act as a ‘counsellor’ to the diagnosing physician. The
classification system consists of a neural attractor network that obtains its input data from perimetric
examination results. Due to an iterated relaxation process, which determines the states of the neurons
dynamically, even ‘noisy’ perimetric output, e.g., early stages of a disease, may be classified correctly
according to the predefined attractors (diseases) of the network.

Introduction

Since many neuro-ophthalmological diseases and lesions, even subtle ones, may be re-
cognized from perimetric examinations, the appropriate classification of visual field
data is essential for diagnosis. However, adequate classification and interpretation of
perimetric examination results is a non-trivial task and requires well-trained personnel
with long-term experience.

There has been recent interest in computer-based classification systems for visual
field data using different approaches, e.g., feed-forward networks and Kohonen
maps1-11. In the work presented here, we propose an alternative kind of neural net-
work12,13, namely a Hopfield net14-16, for application in visual field data classification.
It may be considered a ‘counsellor’ to, rather than a substitute for the diagnosing
physician, providing an additional opinion in judging perimetric examination results.
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Methods

The classification system is based on a neural attractor network (Fig. 1a) consisting
of N binary neurons. These neurons are assigned to the N stimulus locations of the
stimulus grid used to examine the visual field. Therefore, the neurons obtain their
input data from perimetric examination results. We define ‘+1’ as a scotoma and ‘-1’
as no scotoma at a particular test location within the visual field under examination.
The N neurons are fully connected with each other via synaptic couplings Jij.

The synaptic coupling strengths can be calculated directly out of the patterns to be
stored as attractors of the network by means of, e.g., the Hebb rule or the Projection
rule15,16. In general, these attractors may be numbers or image pixels. In the particular
case of visual field data classification, the attractors are predefined idealized scoto-
mata patterns (see e.g. Ref. 17) that are typical for specific diseases, e.g., hemianopic
field defects, sectoral defects, central, paracentral and centrocecal scotomata, nerve
fiber bundle defects, etc.

The following iterated relaxation process

Si(t+1) = sgn(Σi Jij Sj(t)), with sgn() = sign function

determines the states Si(t) of the neurons dynamically. Therefore, even ‘noisy’ perimetric
output (Fig. 1b), e.g., early stages of a disease, may be classified correctly (Fig. 1c) according
to the predefined attractors of the network. ‘Noisy’ perimetric output means a scotomata
pattern that differs from any attractor (idealized scotomata pattern) stored in the network.
A fix-point or attractor of the network dynamic is reached if the following condition is
fulfilled for each neuron i of the network simultaneously:

Si(t+1) = Si(t).

Fig. 1a. Hopfield attractor network with N=6 neurons.
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Fig. 1b. Initial neural network configuration: visual field data derived from perimetric examination.

Fig. 1c. Final neural network configuration: fix-point of the network dynamic after relaxation process.
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In the classification system presented here, we use two classification criteria15,16:
1. Overlap parameter qµ defined as qµ := Σi σi σµ

i
2. Hamming distance Hµ defined as Hµ := Σi (σi - σµ

i)�
with σ being the scotomata pattern derived from the perimetric examination and with σµ

being the µth idealized attractor (both normalized to unity). For better comparison, we
calculate the overlap parameter and the Hamming distance for all predefined network
attractors both, before and after the relaxation process described above. Table 1 shows a
classification example of the visual field data depicted in Figures 1b and c. From the
definition of the overlap parameter and the Hamming distance, it follows that the attractor
with the largest overlap (closest to 1 or 100%) and the smallest Hamming distance (closest
to 0) classifies the scotomata pattern under examination best (in this case a hemianopic
visual field defect, DC=22).

There is a theoretical limit (αc) in the storage capacity α:= (number of classifiable
attractors per total number of neurons) of a Hopfield attractor net for independent and
randomly chosen attractors15,16: αc ≈ 0.138. However, in case the storage capacity of one
neural attractor network is not sufficient for the classification task, each disease may be
assigned with its own neural network, e.g., a classification system that is specialized only
in scotomata patterns caused by glaucoma.

Table 1. Classification result sorted in descending order of probability: disease code (DC), overlap
parameter and Hamming distance, before and after the relaxation process, respectively

Overlap Hamming

DC before after before after

22 92.34% 96.83% 0.15 0.06
0 61.36% 68.51% 0.77 0.63

20 61.90% 68.49% 0.76 0.63
11 55.56% 59.39% 0.89 0.81
2 49.95% 55.44% 1.00 0.89

14 43.03% 45.69% 1.14 1.09
12 40.00% 45.56% 1.20 1.09
21 36.72% 45.20% 1.27 1.10
19 43.03% 45.17% 1.14 1.10
1 39.28% 44.59% 1.21 1.11

17 38.49% 39.93% 1.23 1.20
8 35.36% 37.04% 1.29 1.26
7 23.57% 32.00% 1.53 1.36
5 28.81% 31.64% 1.42 1.37
3 21.61% 29.84% 1.57 1.40

13 22.22% 24.41% 1.56 1.51
4 10.48% 21.57% 1.79 1.57

18 15.71% 17.26% 1.69 1.65
6 8.89% 15.05% 1.82 1.70
9 7.51% 12.72% 1.85 1.75

15 11.11% 12.20% 1.78 1.76
16 11.11% 12.20% 1.78 1.76
10 8.89% 9.76% 1.82 1.80
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Results

Preliminary test results of the classification system on real visual field data derived from
perimetric examinations have come up with a classification success of over 80%. This
success rate may be significantly improved in future versions of the classification system
(see Discussion and Outlook).

Discussion and Outlook

Advantages of the classification system presented here are that the classification of visual
field data is computationally fast, and no neural learning process (e.g., back propagation18,19)
is required to determine the synaptic coupling strengths.

Furthermore, the assignment of a confidence level to the diagnosis by means of the
overlap parameter and the Hamming distance makes the system a real ‘counsellor’ rather
than just a ‘yes/no’ machine. Finally, the classification system may be readily applied to
arbitrary stimulus grids for static perimetry (e.g., 30° or 90° visual fields), since only the
idealized scotomata patterns (network attractors) have to be adjusted accordingly.

In our study, we used the Tübingen Automated Perimeter stimulus grid for a 30° visual
field. Its 191 test locations allow for a high spatial resolution of position, shape and extent
of scotomata (compared to only 60–70 test locations of conventional automated threshold
perimetry).

Future developments of the attractor network classification system should take into
account relative scotomata as well as binocular visual field data for the diagnosis of binocular
scotomata.

Furthermore, more research is needed on the detailed specification of the network attractor
sets (idealized scotomata patterns) to allow for more precise and specific classifications.

Since we are at the start of a new era of computer-based classification systems in medical
sciences, the choice of the appropriate neural network type should not be too restricted.
Rather, combinations of different neural network types should also be taken into account.
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